$((m^{t}d))$ Since fr => 9, Cauchy criterion for uniform convergence (Thm 8.1.10) implies $\forall \epsilon > 0, \exists H_1 = H(\frac{\epsilon}{z(1-\alpha)}) \in \mathbb{N}$ such that $\|f'_m - f'_n\|_{I} < \frac{\varepsilon}{z(h-a)}, \forall m, n > H_1$ Since (fnlxo) converges, Cauchy criterion for convergence of sequence (Thm 3.5.5) implies HE>O, ∃ HZ=H(€)GN such that $|f_m(x_0) - f_n(x_0)| < \frac{\varepsilon}{2}$, $\forall m, n \ge H_2$ Hence Using (X), HE>O, I H = max (H1, H2'S EIN such that if m, n > H, $\|f_m - f_n\|_{L} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(h-\alpha)}(b-\alpha) = \varepsilon$ Then Cauchy Criterion for uniform convegence again inplies $f_m \rightrightarrows f$ for some function $f: I \rightarrow \mathbb{R}$ (causeges uniformly to some f) Next, we need to show that f is differentiable and f' = g

Let
$$c \in I$$
, then mean value $thm \Rightarrow fn \quad x \in I = x \neq c$
 $(f_m - f_n)(x) - (f_m - f_n)(c) = (f'_m - f'_n)(z)(x - c) \qquad fn \quad some \neq between x \neq c$
 $\therefore \left| \frac{f_m(x) - f_m(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| = |f'_m(z) - f'_n(z)| \qquad \leq ||f'_m - f'_n||_I$

Hence YE>0,

$$\left|\frac{f_{m}(x) - f_{m}(c)}{x - c} - \frac{f_{n}(x) - f_{n}(c)}{x - c}\right| < \frac{\varepsilon}{z(b - a)} \quad \text{far } M, N \ge H_{1}$$

$$\text{letting } m \gg 60 \quad \text{and} \quad \text{uoing } f_{m} \Longrightarrow f_{,} \quad \text{we have} \quad f_{n} \quad x \neq c$$

$$\left|\frac{f(x) - f(c)}{x - c} - \frac{f_{n}(x) - f_{n}(c)}{x - c}\right| \le \frac{\varepsilon}{z(b - a)} \quad f_{n} \quad N \ge H_{1}$$

Now using $f'_n \rightrightarrows g$ again for the same $\varepsilon > 0$, $\exists N = N(\varepsilon) \in N \ s.t.$ $\left| f'_n(c) - g(c) \right| < \varepsilon \ fn \ n \ge N$ Then lot $k = \max\{H_1, N\} \in IN$ $\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \le \left| \frac{f(x) - f(c)}{x - c} - \frac{f_k(x) - f_k(c)}{x - c} \right|$ $+ \left| \frac{f_k(x) - f_k(c)}{x - c} - \frac{f'_k(c)}{x - c} \right| + \left| \frac{f'_k(c) - g(c)}{x - c} \right|$

$$< \left(\left|+\frac{1}{2(b-a)}\right)\xi + \left|\frac{f_{K}(x) - f_{K}(c)}{x-c} - f_{K}(c)\right|\right]$$

Note that for the same $\varepsilon > 0$, $\exists \delta_{\varepsilon,c} > 0$ such that $\left| \frac{f_{\kappa}(x) - f_{\kappa}(c)}{x - c} - f_{\kappa}(c) \right| < \varepsilon$, if $|x - c| < \delta_{\varepsilon,c} (x + c)$. Therefore, we have proved that $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon,c} > 0$ s.t. $\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| < (z + \frac{1}{2(b-a)}) \varepsilon$ provided $|x - c| < \delta_{\varepsilon,c}$. Since $\varepsilon > 0$ is arbitrary, $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists ε equals g(c). As $c \varepsilon I$ is arbitrary, f is differentiable on I and

$$-\frac{1}{2}=3$$
. 🔆

Interchange of limit and Integral Thm 8.2.4 let, \cdot fn $\in R[a,b]$ fa n = 1,2,3,... (Riemann integrable) \cdot fn \Rightarrow f on [a,b] (converges uniformly on [a,b] to f) Then $f \in R[a,b]$ and $\lim_{h \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f_{a}$

(i.e. for conveyes mitantly => lin Safa= Sa ling for)

$$\begin{split} If \ n \ge \max\{H(\varepsilon), K(\varepsilon)\}, & we have \\ \left| S(f_{n}; \hat{\mathcal{P}}) - S(f; \hat{\mathcal{P}}) \right| &= \left| \sum_{x=1}^{\ell} f_{n}(t_{x})(x_{1} - x_{i-1}) - \sum_{x=1}^{\ell} f(t_{x})(x_{1} - x_{i-1}) \right| \\ &= \left| \sum_{x=1}^{\ell} \left(f_{n}(t_{x}) - f(t_{x}) \right) (x_{1} - x_{i-1}) \right| \\ &\leq \sum_{x=1}^{\ell} \left| f_{n}(t_{x}) - f(t_{x}) \right| (x_{1} - x_{i-1}) \\ &\leq \varepsilon \sum_{x=1}^{\ell} (X_{1} - x_{i-1}) \qquad (by \ (t_{1})_{3}) \\ &= \varepsilon (b-a) \end{split}$$

Then

$$\begin{split} |S(f; \hat{\mathcal{P}}) - A| &\leq |S(f; \hat{\mathcal{P}}) - S(f_n; \hat{\mathcal{P}})| + |S(f_n; \hat{\mathcal{P}}) - A| \\ &\leq \varepsilon(b - a) + |S(f_n; \hat{\mathcal{P}}) - S_a^b f_n| + |S_a^b f_n - A| \\ &< \varepsilon(b - a + 1) + |S(f_n; \hat{\mathcal{P}}) - S_a^b f_n| \qquad (by (*)_z) \end{split}$$

Finally, fix an $n_0 > \max\{H(\varepsilon), K(\varepsilon)\}$ and using $Sn_0 \in R(a,b]$, $\exists \delta_{\varepsilon,n_0} > O(depends on no too) s.t.$ if $||\dot{\mathcal{O}}|| < \delta_{\varepsilon,n_0}$, then $|\dot{\mathcal{S}}(f_{n_0}; \dot{\mathcal{P}}) - S_a^b f_{n_0}| < \varepsilon.$ Hence $\forall \varepsilon > O$, if $||\dot{\mathcal{O}}|| < \delta_{\varepsilon,n_0}$, we have $|\dot{\mathcal{S}}(f; \dot{\mathcal{P}}) - A| < \varepsilon(b - a + 1) + \varepsilon = \varepsilon(b - a + 2).$

Since
$$\xi > 0$$
 is arbitrary, we have proved that
 $f \in R[a,b]$ and $S_a^b f = A = \lim_{n \to \infty} S_a^b f_n$.

$$Thm 8.2.5 ((Uniform) Bounded Convergence Theorem)$$

$$Iet \quad S_n \in R[a,b] \quad \forall n=1,2,3,\cdots (Riemann integrable)$$

$$\int f_n \rightarrow f \text{ on } [a,b] \quad (pointwise convergence)$$

$$\int \in R[a,b]$$

$$= B > 0 \quad \text{such that } \|f_n\|_{[a,b]} \leq B, \forall n=1,2,3\cdots$$

$$(a.e. |f_n(x)| \leq B, \forall x \in [a,b] a \forall n=1,2,3\cdots)$$
Then $\lim_{n \neq a} \int_a^b f_n = \int_a^b f = \int_a^b \lim_{n \neq a} f_n$

Pf: Omitted Remark: The condition in Bounded Convegence Thus is weaker than Thus 8.2.4

$$\frac{\text{Thm 8.2.6 (Dinis Theorem)}}{\text{let } [\cdot S_n: [a,b] \rightarrow \mathbb{R} \text{ be a monotone seq. of continuous Sumptimes} \\ (\cdot S_n \rightarrow f \text{ on } [a,b] (pointurise consequence) \\ (\cdot f_b \ \underline{continuous} \ \text{Then } S_n \Rightarrow f \text{ on } [a,b] (uniform (consequence)) \\ (\cdot f_n \Rightarrow f \text{ on } [a,b] (uniform (consequence)) \\ (\cdot f_n \Rightarrow f \text{ on } [a,b] (\cdot f_n) \end{bmatrix}$$

By assumption $g_n(z) \rightarrow 0$ as $n \rightarrow \infty$. ⇒ ∃ L>0 s.t. $\mathbb{I} \ \mathbb{L} \ge \mathbb{L}, \text{ then } \ \mathbb{O} \le \mathbb{P}_{n_{k,l}}(z) < \frac{\mathcal{E}_{0}}{2}$ In particular $0 \leq g_{n_k}(z) < \frac{\varepsilon_0}{z}$ For clavity of presentation, denote nk, by N. Then $0 \leq g_N(z) < \frac{\varepsilon_0}{z}$ Now using containity of GN (= Gn,) $\lim_{k \to \infty} g_{N}(X_{ke}) = g_{N}(z) \qquad \left(\text{Since } \lim_{k \to \infty} X_{ke} = z \right)$ ⇒ ILI>O St. if l>LI, then $Q_{N}(X_{k_0}) < \frac{\varepsilon_0}{2}$ Using the assumption that g_n is decreasing, we have $g_{N}(X_{ke}) \leq g_{N}(X_{ke}) < \frac{\varepsilon_{6}}{z}$, $\forall N \ge N = n_{ke}$ In particular, for n = nke with l > max{L,L,}, we have $\mathcal{E}_{O} \leq \mathcal{G}_{\eta_{k_{0}}}(X_{k_{0}}) \leq \frac{\varepsilon_{0}}{z}$

which is a contradiction. Therefore $g_n \Rightarrow O$ (milfans convergence) \propto

Remark: The approach in Textbook regaines the fact that
fa any given function
$$t \mapsto \delta(t) > 0$$
 on tab]
 \exists finitely many $t \in tab], t=1,..,t$ such that
 $tab] \subset \bigcup_{x=1}^{0} (t_x; \delta(t_x), t_x; +\delta(t_x)).$
This needs than 5.55 which is not covered in NATH2000.
These two proofs use different rensians of the fact that
 $tab], a closed a bounded interval, is compact:$
(i) Any sequence in $tab].$
(ii) For any open cover of $tab].$
 (tii) For any open cover of $tab].$
 (tii) For any open cover of $tab].$
 (tii) For any open cover, i.e.
 \exists finitely many λ_i , $t=1,...t$ Such that
 $table (a,b) \subset \bigcup_{i=1}^{1} (a_{i},b_{i})$
Detail discussion and proof are skipped.

\$8.3 The Exponential and Logarithmic Functions The Exponential Function

Thm 8.3.1
$$\exists a \text{ function } E : \mathbb{R} \rightarrow \mathbb{R} \text{ s.t.}$$

(i) $E'(x) = E(x)$, $\forall x \in \mathbb{R}$
(ii) $E(0) = 1$

$$\begin{split} Pf &: [st = E_{1}(x) = 1+x \\ E_{2}(x) &= 1+x \\ E_{2}(x) = 1+ \int_{0}^{x} E_{1} = 1+ \int_{0}^{x} (1+x) dt = 1+x + \frac{x^{2}}{2} \\ \vdots \\ &= E_{n+1}(x) = 1+ \int_{0}^{x} E_{n} , \quad \forall n = 1, 2, 3 \cdots \\ Then \quad Induction'' \quad inplies \quad fa \quad all \quad n = 1, 2, 3, \cdots \\ &= E_{n}(x) = 1+x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} \qquad (Ex !) \\ Consider \quad a \quad closed \quad interval \quad [-A, A] . \quad (A > 0) \\ Then \quad fa \quad x \in EA, A] \quad and \quad m > n > 2A, \quad we \quad have \\ &\left| E_{m}(x) - E_{n}(x) \right| = \left| \frac{x^{n+1}}{(n+1)!} + \cdots + \frac{x^{m}}{m!} \right| \\ &\leq \frac{A^{n+1}}{(n+1)!} + \cdots + \frac{A^{m}}{m!} \qquad (sinterval (x| \le A)) \\ &\leq \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n+2} + \cdots + \frac{A^{m-n-1}}{m(m-1) - (m+2)} \right) \end{split}$$

$$\leq \frac{A^{n+1}}{(n+1)!} \left(\left(+ \frac{A}{n} + \dots + \frac{A^{m-n-1}}{n^{m-n-1}} \right) \right)$$

$$\leq \frac{A^{n+1}}{(n+1)!} \left[\left[+ \frac{1}{2} + \dots + \left(\frac{1}{2} \right)^{m-n-1} \right] \quad (Sin(e n > 2A))$$

$$\leq \frac{2A^{n+1}}{(n+1)!}$$

Taking sup. over (-A, A), we have
$$\forall n > n > 2A$$

 $|| E_M - E_n ||_{EA,A]} \leq \frac{2A^{n+1}}{(n+1)!} \longrightarrow 0$ as $n \Rightarrow \infty$
Cauchy (ritation for Uniform Convergence (Thur 8.1.10) implies
 $E_n(x)$ converges uniformly to some function on EA,A]
Since $A > 0$ is arbitrary, we canclude that
 $E_n(x)$ converges for all $x \in \mathbb{R}$ (not nocessary uniform on \mathbb{R})
It is because, $\forall x \in \mathbb{R}$, we can find an $A > 0$ s.t.
 $x \in (-A, A]$. Then the uniform convergence on $(-A, A]$
uniplies $E_n(x)$ converges.
Denote the (pointarise) lunit by
 $E(x) \xrightarrow{denote} n \xrightarrow{x} E_n(x)$, $\forall x \in \mathbb{R}$.
Note that $E_n(x) = (1 + \int_{\infty}^{x} E_{n-1})$

 $\Rightarrow \quad E_{N}(0) = (, \quad \forall \quad N = 2, 3, \cdots \quad (E_{l}(0) = l \ \hat{v} \ dear)$

 $E(0) = \lim_{n \to \infty} E_n(0) = 1$ Houce Also by Fundamental Thru of Calculus (2nd Form) Thu F.3.5 and $E_{N}(x) = 1 + \int_{0}^{x} E_{N-1}$, we have $E'_{n}(x) = E_{n-1}(x)$ - JA70, $\left(E_{n}\Big|_{FA,AT}\right) = E_{n-1}\Big|_{FA,AT} \Longrightarrow E\Big|_{FA,AT}$ (Wirferm) Then by Thm 8.2.3, together with $E_{n+1}|_{E-A,AJ}(0) \rightarrow E(0)$ we have E/[-AAI is differentiable and $(E|_{FA,AT}) = E|_{FA,AT}$ Since A>O is arbitrary, this implies E(x) exists YXER and E(x) = E(x)

Cor 8.3.2 The function
$$E$$
 that derivative of every order and $E^{(n)}(x) = E(x)$, $\forall x \in \mathbb{R}$.

Pf = Easy, by induction.

Cor8.33 If X>0, then E(X)>1+X

Pf: From $E_n(x) = 1 + x + \frac{x^2}{s!} + \dots + \frac{x^n}{n!}$, we have $m > n \Rightarrow E_m(x) > E_n(x)$, $\forall x > 0$ Letting $m \to \infty$, and take n > 1, we have $E(x) \ge E_n(x) > E_i(x) = 1 + x$, $\forall x > 0$

$$\frac{\text{Thm 8.3.4}}{(\texttt{X})} : E = |\mathbb{R} \to |\mathbb{R} \text{ is the unique function satisfying}}$$

$$(\texttt{X}) \left\{ \begin{array}{l} E'(\texttt{X}) = E(\texttt{X}), \quad \forall \texttt{X} \in \mathbb{R} \\ E(\texttt{O}) = 1 \end{array} \right\}$$

Ef: Suppose that
$$E_1 \le E_2$$
 satisfy (\bigstar) .
Let $F = E_1 - E_2$.
Then F is differentiable and
 $\begin{cases} F' = E_1' - E_2' = E_1 - E_2 = F \\ F(0) = E_1(0) - E_2(0) = 0 \end{cases}$

Moreover, induction => F has derivatives of every nder and $F^{(N)} = F$, $\forall n = 1, 2, 3, \cdots$

Hence
$$F^{(n)}(0) = F(0) = 0$$
, $\forall n = 1, 2, 3, ...$

Applying Taylor's Thrm 6.4.1 to
$$F|_{COXJ}$$
 fn X > 0
 $Cr F|_{CX,OJ}$ fn X < 0,
We have fn X > 0
 $F(X) = F(O) + F(O)X + \cdots + \frac{F^{(n-1)}(O)}{(N-1)!}X + \frac{F^{(n)}(Cn)}{n!}X^{n}$
 $= \frac{F(Cn)}{n!}X^{n}$ for some $Cn \in O,XJ$.
Since F is often on $[O,X]$, F is bodd on $[O,XJ]$.
 $\therefore \exists K > 0$ (depends $m \times)$ such that
 $|F(Cn)| \leq K \quad (\forall n = 1,2,\cdots)$
 $\Rightarrow |F(X)| \leq K \frac{X^{n}}{n!}$
Since $\frac{1}{n \otimes \infty} \frac{X^{n}}{n!} = 0$, letting $n \gg 60$, we have $|F(X)| = 0$.
 $\therefore F(X) \equiv 0, \forall X > 0$
Similarly fn X < 0, we also have $F(X) \equiv 0, \forall X < 0$.
All together $F(X) \equiv 0$.
 $ie = E_{1}(X) \equiv E_{2}(X)$
 \therefore The function E is unique.

Remarks: (iv) justifies the use of notation
$$e^{X} = E(X)$$
:
 $e^{X+Y} = e^{X} e^{Y}$, $\forall X, Y \in \mathbb{R}$
• In (V), "RHS" means the rational power of the number e
Pf: (iii) Suppose on the contrary that $E(x) = 0$ for some $x \in \mathbb{R}$,
Since $E(0) = 1$, $x \neq 0$.
Let $J_{X} = closed$ interval $[0, x]$ or $[x, 0]$ depends on the
Sign of d.
and $K > 0$ such that $|E(X)| \leq K$, $\forall X \in J_{X}$.

As E has derivative of all order, Taylor's Thm 6.4.1 (base at X=d) implies $\forall n=1,2,3,\cdots$

$$E(0) = E(d) + \frac{E(d)}{1!}(0-d) + \dots + \frac{E^{\binom{n-1}{d}}(0-d)}{\binom{n-1}{1!}}(0-d)^{n-1} + \frac{E^{\binom{n}{d}}(Cn)}{n!}(0-d)^{n} \quad \text{for some } Cn \in J_d.$$

$$\Rightarrow 1 = E(\alpha) + E(\alpha)(-\alpha) + \frac{E(\alpha)}{z'}(-\alpha)^2 + \dots + \frac{E(\alpha)}{(n-1)!}(-\alpha)^{n-1} + \frac{E(\alpha)}{n!}(-\alpha)^n$$

Since
$$E(0)=1$$
, and $E^{(h)}=E \forall k=1,3,...$
By $E(d)=0$, $I = \frac{E(C_n)}{n!}(-d)^n$
 $\Rightarrow \qquad I \leq \frac{K|d|^n}{n!}$, $\forall n=1,2,...$
 $(\longrightarrow 0 \text{ as } n=76)$

which is impossible. . . E(d) = 0, V dER.

$$Pf: (iv) \quad Fix y \text{ and consider the ratio}$$

$$G(x) = \frac{E(x+y)}{E(y)} \quad \text{as a function of } x \text{ .}$$

$$G(x) \text{ is well-defined since } E(y) \neq 0 \quad \text{by (iii)} \text{ .}$$

$$G(v) = \frac{E(y)}{E(y)} = 1 \text{ .}$$

• E differentiable \Rightarrow G differentiable and $G'(x) = \frac{E'(x+y)}{E(y)}$ (by Chain rule) $= \frac{E(x+y)}{E(y)} = G(x)$ (by (i)) By Thm 8.3.4, G(x) = E(x), $\forall x \in \mathbb{R}$ \therefore E(x+y) = E(x)E(y) $\forall x, y \in \mathbb{R}$.

Pf: (V) (Ex! MATH(010 level proof) ≫

 $\frac{\text{Thm } \text{R} 3.7}{\bullet} = \text{Exponential function } E \text{ is structly involving on } R \text{ and}$ $\bullet = E(IR) = \{y \in IR : y > 0 \}.$ Further $\bullet = \lim_{X \to -\infty} E(X) = 0$ $\bullet = \lim_{X \to +\infty} E(X) = +\infty$

Pf: E differentiable on $\mathbb{R} \Rightarrow \mathbb{E}$ continuous on \mathbb{R} . It's proved in (iii's in Thurs.3.6 that $\mathbb{E}(X) \neq 0, \forall X \in \mathbb{R}$. $\therefore \mathbb{E}(0) = 1 \Rightarrow \mathbb{E}(X) > 0, \forall X \in \mathbb{R}$. Otherwise, intermediate value then $\Rightarrow \mathbb{E}(X_0) = 0$ for sme Xo which is a contradiction.

